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In Part I, it was shown that boundary element method calculations could successfully be
applied to determine sound ampli"cation by a tyre/road geometry. However, the
computations are expensive, limited to frequencies below 2500 Hz, and provide little
physical insight. In Part II, two supplementary asymptotic approaches are developed; a ray
theory for high frequencies and a compact body scattering model for low frequencies. When
tested on a representative tyre geometry, these methods are found to have excellent
predictive capabilities, at frequencies above 3 kHz and below 300 Hz respectively.
Furthermore, the ray theory shows that the neglect of curvature in Ronneberger's wedge
model (1989 =orkshop on Rolling Noise Generation, Institut fur ¹echnische Akustik,
¹echnische ;niversitat, Berlin) leads to erroneous ampli"cation levels and interference
e!ects, and the scattering model intriguingly predicts that low frequency ampli"cation
increases with belt width independently of the tyre diameter. Lastly, this work con"rms the
importance of numerical calculations for the intermediate frequencies, where tyre noise is
most signi"cant. � 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In Part I of this work, the boundary element method (BEM) was found be an e!ective tool
for calculating the horn ampli"cation of a tyre on a road. However, although the
calculations have excellent predictive capabilities, they give little physical insight into the
phenomenon. They also become increasingly demanding at higher frequencies. Thus, in
Part II, the aim is to develop complementary asymptotic theories of the horn e!ect,
applicable to low- and high-frequency regions of the spectrum.

A "rst attempt at an analytical description of the horn e!ect was made by Ronneberger [1].
He represented the tyre geometry as a #at rigid surface extending to in"nity at a small angle to
the road, forming a wedge-shaped horn. Contributions from a single source and its images
then sum to produce a far-"eld acoustic pressure spectrum which exhibits a characteristic,
lobed interference pattern. The "nite width of the tyre is accounted for by superimposing
a low-frequency dependence derived from the spectrum of a decaying sine wave. Although
this model describes the general shape of the ampli"cation spectrum, it does not fully resolve
the low frequency behaviour, nor does it predict the correct lobe structure for high
frequencies. It therefore seems necessary to describe the tyre geometry more accurately.

From the comparisons of experimental measurements and numerical results in references
[2, 3], Graf et al. concluded that the geometric details of the tyre edges and side walls are
unimportant. Additionally, the application of typical axle loads to the tyre only slightly
a!ects the ampli"cation rate. However, the "nite width and curvature of the tyre belt are
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. The simpli"ed tyre model and discretization of the tyre surface (see section 3).
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features which probably do need to be accounted for. Accordingly, the tyre is represented as
a short cylinder with rigid surfaces (Figure 1). The radius of the cylinder is R and it has
length (i.e., belt width) w.

In this asymptotic revisit of the horn e!ect, the broadband frequency range of interest is
divided into two regions. For high frequencies, ray theory (see, for example, Keller [4]), is
applied to illustrate the e!ects of surface curvature. Here, the sound emitted from the source is
modelled as acoustic rays, which reach a far-"eld observer either directly, or via one or more
re#ections at the tyre and road surfaces. The multiple re#ections of these rays are described by
a set of recursive formulae which can be solved numerically. The resultant sound pressure is
the linear superposition of contributions from individual rays, which are calculated by
applying conservation of acoustic energy #ux along the in"nitesimally thin ray tubes. When
a ray tube is re#ected by a surface, the local curvature around the re#ection point modi"es
the ratio of area change along the tube according to the mirror laws. This leads to
a correction factor on the wave amplitude as a function of the curvature. The theory
is described, and its predictions compared with experiment, in section 2. (See also
Appendix A.)

At low frequencies, the tyre is treated as a simple acoustic scatterer. This leads to
a multipole expansion for the acoustic far "eld. In addition to the prescribed monopole
sound source, a dipole term appears, due to the presence of the tyre boundary. Its strength is
linearly proportional to the acoustic frequency and the incompressible force exerted on the
tyre due to the monopole. The predictions of this low-frequency analysis are compared with
measurement and with BEM calculations in section 3.

2. HIGH-FREQUENCY RAY MODEL

As discussed above, the tyre is modelled as a rigid cylinder with radius R and belt width
w, in contact with an in"nite plane surface. Figure 1 shows this geometry, with a point



Figure 2. A ray of multiple re#ections in the tyre/road pinch area.
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source of sound, S, located a distance d
�
from the middle point of the tyre/road contact line.

The observer position is at a distance ¸ and angle � to the road, as indicated in Figure 2.
Both source and observer lie in the same xz plane for simplicity, and sound travels between
the two along straight paths (rays). Incidence angles �

��
and �

����
are de"ned as the angles

between the incident ray and the normals to the road and wedge surfaces respectively. The
subscripts also indicate the number of re#ections.

At the re#ection point P
����

on the cylinder, the ray has undergone an odd number
2m#1 of re#ections, and the distance to the contact line is d

����
with a secant angle �

����
.

The radius to P
����

is thus at an angle 2�
����

to the vertical, so the incidence angles at
successive re#ections are related by
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The distances to re#ection points can be linked by applying the sine rule to the triangles
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When combined with the relation d
����

"2R sin �
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, these equations can be applied in
the order (3), (1), (4), (2) to "nd �

����
for a given �

��
. The "nal re#ection angle, �

��
(or

�
����

if the last re#ection is from the cylinder), can thus be determined straightforwardly
given the initial emission angle, �

�
.

The angle between the last re#ection point and the observer, �
�
, follows again from the

sine rule:
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Figure 3. The ray of six re#ections, d
�
"130 mm and (¸, �)"(2)8 m, 153). (a) F(�

�
); (b) the ray, �

�
"!41)53.

436 C.-Y. KUO E¹ A¸.
or
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if the last re#ection is on the cylinder. Of course this re#ection, like all previous ones, must
have equal incidence and re#ection angles, so that �

�
has to satisfy the constraint

F(�
�
)"0, (7)

where
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�
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�
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for a "nal re#ection on the road, and

F(�
�
)"�

�
!�

����
(9)

otherwise. In addition, �
�
is between !�/2 and �/2 for all values of n, and the last segment

of the ray must not be obstructed by the cylinder.
A typical F(�

�
) is plotted in Figure 3(a) for a ray of six re#ections. In all numerical results,

the tyre radius is 32 cm. In this case, the sound source and the listener are at d
�
"130 mm

and (¸, �)"(2)67 m, 153) respectively. The plot shows that the function F(�
�
) is

a monotonically decreasing function of �
�
, so constraint (7) is satis"ed only for one value, in

this case !0)725 radK!41)53 (circled in the "gure). (Figure 3(b) shows a visual check of
this ray. It "rst propagates in towards the contact line before being re#ected outward by the
horn geometry.) Thus, for a given number of re#ections, there is a unique solution for the
emission angle �

�
at the source. Furthermore, it is also found that no solution for �

�
exists

above a certain number of re#ections, whose value depends on the source and observer
locations.

As for the wedge case [5] then, there are only a "nite number of rays which contribute to
the sound at a given location. The amplitude of each contribution is derived from energy
conservation along the ray tube (see Appendix A). For this calculation, the lengths of the ray
segments shown in Figure 2 are required; these are straightforwardly obtainable once the d

�
and �

�
have been calculated. On summing the contributions, the acoustic pressure at the

observer is found, and the horn ampli"cation follows from dividing by the corresponding
pressure without the cylinder in place.



Figure 4. Comparison of transfer functions with cylindrical drum measurements. (¸, �)"(2)8 m, 153). The
sound source is at (a) d

�
"60 mm and (b) d

�
"120 mm.

Figure 5. Comparison of transfer functions with smooth tyre measurements. (a) d
�
"60 mm, (¸, �)"(2)67 m,

153); (b) d
�
"60 mm, (¸, �)"(1)92 m, 2)43); (c) d

�
"120 mm, (¸, �)"(2)67 m, 153); and (d) d

�
"120 mm,

(¸, �)"(1)92 m, 2)43).
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Figure 4 shows comparisons between these calculations and measurements. The
predictions of Ronneberger's wedge theory are also superimposed for reference. One of the
di$culties in employing this theory is the choice of wedge angle. However, it is found that
only the magnitude of the ampli"cation is sensitive to this parameter when it is small; the
dips in the spectrum remain "xed at the same frequencies. Here a wedge angle of 103 is used.
It is clear that better agreement is achieved by using ray theory, especially for large d

�
.

Figure 5 shows further comparisons with measurements, in this case on a perfectly
smooth Dunlop SP3000 tyre with d

�
"60 and 120 mm. There is no load on the tyre and d

�
is the measured distance from the microphone to the tyre/road contact point. The ability of
the theory to describe variations in the listener's position is also tested in these plots. The
listener is at (2)67 m, 153) and (1)92, 2)43) respectively.

The measured transfer functions share many similarities between the simpli"ed
cylindrical drum and the smooth tyre cases, con"rming the initial geometrical modelling
assumptions. The only minor di!erence is that the frequency dips of the interference
patterns for the former are more clearly de"ned. The agreement between theory and
experiment is excellent for frequencies higher than about 3 kHz, and the dependence on the
listener's position is also correctly predicted.
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The comparison with the predictions of the wedge theory shows that the tyre surface
curvature signi"cantly modi"es the structure of the transfer functions and their magnitude.
Generally speaking, the bandwidths of the spectral lobes are broadened and their
magnitudes are reduced by the introduction of curvature. From the viewpoint of the ray
theory, the change in lobe structure results from altered ray path lengths, and hence altered
interference e!ects. The magnitude reduction arises because the curvature around the
re#ection point on the tyre increases the rate of area increase along the ray tube, and
therefore the subsequent decay rate of the acoustic amplitude.

3. COMPACT TYRE MODEL

When the frequency is below about 100 Hz, the acoustic wavelength is much greater than
the tyre diameter. The tyre can thus be modelled as a compact scatterer. The geometry of
Figure 1 again applies, and the origin of co-ordinates is placed at the centre of the tyre/road
contact line. The source then lies at x

�
"(d

�
, 0, 0), and the pressure "eld at a radian

frequency � obeys the inhomogeneous Helmholtz equation

�� �#
��

c�� p"A� (x!x
�
), (10)

where x"(x, y, z),� � is the Laplace operator andA is the strength of the source. (Note that
the harmonic variation e�i�� has been suppressed.) The equation is to be solved subject to
the boundary condition of zero normal velocity on the road and tyre surfaces, i.e.,

�p
�n

"0, (11)

where n is the normal co-ordinate in the direction outward from the solution domain. The
scattered acoustic waves must also be outgoing in the far-"eld, to satisfy causality.

The scattered waves can be found by expressing the far "eld pressure in the form of an
integral equation involving a Green function. The Green function chosen is the wave "eld at
x due to a point monopole source of unit strength at x�"(x�, y�, z�), with an in"nite rigid #at
surface on z"0. This function is the solution of

�� �#
��

c� �G(x; x� )"� (x!x�), (12)

subject to the boundary condition

�G
�z

"0 (13)

on z"0. It corresponds to the "eld of the source in free space, modi"ed by that of an image
source at x�

�
"(x�, y�,!z�), i.e.,
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On multiplying equation (10) by G and performing a volume integral over x, it becomes
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���
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is the pressure "eld which the source of equation (10) would generate in the absence of the
tyre. (Note that the relation �x�

�
!x

�
�"�x�!x

��
� has been used to write it in this

recognizable form.) The "nal equation for the pressure "eld then follows from applying the
Green theorem [7] to the "rst term in equation (15) and invoking equations (11), (12) and
(13). The result is

p(x�)"p
���

#�
�

p (x)
�G
�n

d�x . (17)

The modi"cation of the acoustic "eld due to the existence of the tyre is thus represented by
an integral incorporating the, as yet unknown, pressure on the tyre surface, S. A solution to
equation (17), subject to the low}frequency condition �R/c�1, is now sought.

The derivative �G/�n in equation (17) is equal to �G)n, where n is the unit vector in the
n-direction, and
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In the cases of practical interest, the observer is in the far "eld (� �x��/c�1), and this
condition can be combined with the low}frequency requirement (which implies � �x �/c�1
and hence also �x ���x� �, for �x � on the tyre surface) to obtain

�GK

1

4�
i�

c

(x�#x�
�
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�x� ��
ei� �x� �/c . (19)

Under this approximation, equation (17) becomes
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���
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1
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c
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�
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) �

�

p (x)n(x) d�x. (20)

This equation shows that the scattered "eld is due to the net force exerted on the tyre by
the acoustic pressures. It thus exhibits the characteristic directivity pattern of a dipole, with
two maxima and two minima. The directivity arises from the dot product of the force vector
with the horizontal observer direction, x�#x�

�
. For the source location chosen, symmetry
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dictates that the force has no component in the y direction, and the maxima thus lie directly
fore and aft of the tyre, with the minima at the sides.

The problem has now been reduced to "nding the force on the tyre. Since it is compact,
the local velocity "eld is e!ectively incompressible, and hence the pressure satis"es

� �p"A�(x!x
�
), (21)

subject to the same boundary condition (equation (11)) as previously.
One could apply the standard incompressible boundary element method to solve this

equation numerically and hence obtain the surface pressure on the tyre. However, a more
convenient way to calculate the tyre force is by the use of a geometric potential. The
potential �

�
(x) is de"ned so that it satis"es the homogeneous Laplace equation

� ��
�
"0 (22)

and the boundary condition

��
�

�n
"n ) e

�
(23)

on the tyre and road surfaces. (Here e
�
is the unit vector in the x direction.) The bene"t of

introducing �
�
can be seen by multiplying it with equation (21) and integrating over the

volume z'0. After the application of the Green theorem, one obtains

e
�
) �

�

p (x)n (x) d�x"!A�
�
(x

�
). (24)

In other words, the force in the x direction induced on the tyre by a point source at �x
�
� is

simply the value of the geometric potential at x
�
, multiplied by the source strength.

An integral equation for the geometric potential can be derived by using the same, Green
function, approach that led to equation (17) for the acoustic pressure. The corresponding
(incompressible) Green function satis"es equations (12) and (13) with �/c"0, and is given
by

G
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Combining this solution with (22) in the same way as previously then gives
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(cf., equation (17)). The unknown values of �
�
on the tyre surface are found by letting x�

approach the tyre surface. This process is complicated by the singularity in G
�
at x�"x, but

can be shown to yield a "nite result (see, for example, reference [6]). Hence one obtains an
integral equation for the potential �

�
on the tyre surface:

�
�
(x�)
2

"p.v. �
�

�
�
(x)

�G
�

�n
d�x!�

�

G
�
n ) e

�
d�x, (27)

where p.v. denotes the Gaussian principal value of the integral.



Figure 6. Geometric potential on the tyre belt. w/D"0)333.

Figure 7. Force exerted on the tyre. **, d
�
/D"0)0667; } }}, d

�
/D"0)133; } )}, d�

/D"0)20.
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This equation has been solved numerically, on the mesh sketched in Figure 1. A typical
solution for �

�
(x�) on the tyre belt surface is shown in Figure 6. It is non-

dimensionalized on the tyre diameter, D ("2R), which is about 0)6 m for common
passenger car tyres.

The force exerted on the tyre can now be calculated by substituting the known boundary
values of �

�
into equations (26) and (24). Figure 7 shows the force due to a source of unit

strength as a function of the tyre aspect ratio, w/D, and source location. Over the range of
aspect ratios plotted, the force on the tyre increases almost linearly with belt width, due to
the stronger reaction force associated with the wider tyre belt. In contrast, the force
decreases as the source moves away from the contact because the interaction between the
source and the tyre weakens. Remarkably, there is e!ectively no dependence on the
diameter, D.

The ampli"cation due to the tyre can now be found by dividing equation (20) by p
���

, and
noting that p

���
K!(A/2��x� �)ei� �x� �/c in the far "eld. The result is

p(x�)
p
���

"1#

i�D

c

x�
�x� �

�
�
(x

�
)

D
. (28)



Figure 8. The dipole pattern on a linear scale. w/D"1/3, d
�
/D"0)083 and �"89)43.**, positive values of B;

}} }, negative values of B. Simulation curves: (a) 20 Hz; (b) 50 Hz; (c) 100 Hz.

Figure 9. Transfer functions at low frequencies. **, compact multipole expansion; }} } boundary element
method; ) ) ) ) experimental measurement.
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The dipolar dependence of the scattering term can be made explicit by de"ning

B (�, �)"!

x�
�x� �

�
�
(x

�
)

D
"!

�
�
(x

�
)

D
sin � cos �, (29)

where � is the angle from x� to the z-axis and � is the horizontal projection angle of x� to the
x-axis. The low frequency prediction for B is compared with the BEM simulation in
Figure 8. The theoretical results are shown by the thick lines, and are symmetrical fore and
aft. Among the calculation results, a symmetric dipole is evident for the lowest frequency
shown, 20 Hz, with amplitude about 16% smaller than the theoretical prediction. As the
sound frequency increases, the dipole lobe structure becomes biased towards the front of the
tyre. This is due to contributions from higher order multipole sources.

The ability of the theory to predict low frequency horn ampli"cation is demonstrated in
Figure 9. Here transfer functions at an observer location (¸, �)"(3)16 m, 303) are plotted
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for a source 100 mm from a 0)6 m diameter tyre. Two widths are tested, 0)2 m, for
which theoretical, experimental and BEM results are shown, and 0)3 m, where only
theoretical and BEM results are available. The agreement is excellent up to about 300 Hz
(�D/cK3)3).

4. CONCLUSIONS

In this paper, two asymptotic theories for sound ampli"cation by a tyre/road geometry
have been presented. The "rst (section 2) is based on the Keller ray theory [4], and shows
good agreement with experiment at high frequencies (above 3 kHz for a representative
geometry). The second (section 3) is a low frequency analysis, and compares well with
experiment and BEM computations up to 300 Hz (for the representative geometry).

The ray theory has two attractive features. Firstly, it gives predictions of the ampli"cation
at frequencies beyond the practical reach of BEM calculations (see Figures 4 and 5).
Secondly, it provides a useful physical basis for the interpretation of the lobed interference
patterns seen at these frequencies. When compared with an earlier model, Ronneberger's
[1] wedge representation (which leads to an image source formulation), the ray theory
locates the frequency minima more accurately, and shows that Ronneberger's amplitude
predictions are much too high (because they neglect additional ray spreading due to
re#ection by the curved tyre surface).

The low frequency theory also provides useful quantitative information, in a range where
accurate experimental results are hard to obtain. However, as BEM calculations are
inexpensive at these frequencies, its main strength is the insight it yields into the parametric
dependence of the ampli"cation. Speci"cally, equation (28) and Figure 7 show that it is
e!ectively independent of tyre diameter, and is approximately given by

1#�
�w

c
sin � cos ��

�

for a source close to the tyre. (Here w is the tyre width, and the angles �, � specify the
observer location via equation (29).) This expression appears to be valid up to �w/cK1)5.

In summary, at low and high frequencies it is possible to describe the horn e!ect with
asymptotic theories which not only give good quantitative predictions, but also illuminate
the physical aspects of the phenomenon. Equally, this work also shows that, at the
frequencies of practical interest for tyre noise (approximately 500}2500 Hz), a numerical
approach is required to predict the ampli"cation accurately.
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APPENDIX A: RAY THEORY

Ray theory [4] is a representation of the wave equation that is valid at high frequencies.
According to this theory, sound travels along line paths, or &rays', whose geometry is
independent of frequency. When the ambient #uid has uniform sound speed and mean
density, the rays are straight lines unless they are re#ected by boundaries, such as the tyre
and road surfaces. Edge scattered waves represent a higher order correction [4], and hence
are neglected.

Assume a straight ray with time dependence e�i�t and wavenumber k ("�/c). The
corresponding pressure can be expressed as p (s)"A(s)ei��, where s is the distance measured
along the ray, with associated amplitude A(s) and phase ks. Neighbouring rays form a &ray
tube', as shown in Figure A1. It can be shown that acoustic energy #ux is conserved along
this tube [4]. Therefore, A�(s) d�(s)/
c is a constant, where d�(s) is the cross}sectional area
of the ray tube. The elemental area d�(s) has two Gaussian principal directions, say 1 and 2,
and principal radii of curvature 	

�
#s and 	

�
#s respectively. Physically, 	

�
and 	

�
are the

distances from s"0 to the &caustics' (centres of curvature) of the two principal directions.
Therefore, the ratio of the area change, d�(s)/d�(0), is (	

�
#s) (	

�
#s)/(	

�
	
�
), which implies

that the ray amplitude at s is given by

A(s)"A(0)�
	
�
	
�

(	
�
#s)(	

�
#s)�

���
. (A1)

Ray re#ection (Figure A2) is specular and, for rigid a surface, conserves acoustic energy
while leaving the phase of the ray unaltered. Thus, when the incident ray from the caustic
S is re#ected, one can imagine that the subsequent ray is emitted from the image caustic S�
with an amplitude which corresponds to p(0) at point O. Therefore, incorporating (A1), the
ray at s is described by

p (s)"p (0)�
	
�
	
�

(	
�
#s) (	

�
#s)�

���
exp(iks), (A2)
Figure A1. A ray tube. s is the distance along the ray measured from the element area d�(0). 	
�
and 	

�
are the

distances from s"0 to the caustics in the Gaussian principal directions 1 and 2.



Figure A2. Ray re#ection by a smoothly curved surface with radius of curvature R.
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where 	
�
is the distance from O to the caustic of the ray in the second principal direction

(perpendicular to the plane of Figure A2). From elementary geometrical considerations, one
has R d� cos �"	

�
(2d�#d�)"


�
d�, and hence 	

�
"


�
R cos �/(2


�
#R cos �). In the

out-of-plane direction, 	
�
"


�
(because the radius of curvature is in"nitely large across the

belt for this cylindrical tyre). Equation (A2) can thus be applied successively to calculate the
ray amplitude after each re#ection on the tyre belt and road.
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